解析各光谱带范围与应用
发布时间:2023-04-20
浏览次数:918
云顶天宫在光谱分析中可分为原子光谱和分子光谱两种,原子光谱一般都是线状的,而分子光谱则常是带状的。
在光谱分析中可分为原子光谱和分子光谱两种,原子光谱一般都是线状的,而分子光谱则常是带状的。这些谱带是由于分子中除了电子在各能级之间跳动外,尚有原子在自己平衡位置上的振动及分子的振动而形成的。
光谱带波长是近似值;精确值取决于特定仪器(例如用于地球观测的卫星传感器的特性、照明特性和用于植被分析的传感器),下面给大家介绍一下各各光谱带范围与应用。
蓝色,450–515..520 nm,用于大气和深水成像,在清水中可达 150 英尺(50 米)的深度。
绿色,515..520–590..600 nm,用于对植被和深水结构成像,在清水中可达 90 英尺(30 米)。
红色,600..630–680..690 nm,用于对人造物体、深达 30 英尺 (9 m) 的水、土壤和植被进行成像。
云顶天宫近红外(NIR),750–900 nm,主要用于对植被成像。
中红外(MIR),1550–1750 nm,用于对植被、土壤水分含量和一些森林火灾进行成像。
云顶天宫远红外(FIR),2080–2350 nm,用于对土壤、水分、地质特征、硅酸盐、粘土和火进行成像。
10400-12500 nm的热红外线使用发射辐射而不是反射辐射来成像地质结构、水流的热差异、火灾和夜间研究。
上一页 : 光谱成像类型细分
下一页 : 多光谱和高光谱成像的应用
相关产品
-
凝视式高光谱成像仪原理及优势解析
凝视式高光谱成像仪采用面阵探测器,一次曝光即可获取目标区域的二维图像信息,同时通过光谱分光系统获取不同光谱波段的信息,从而形成高光谱数据立方体。这种成像方式不..
-
推扫式高光谱成像仪有什么优势?
推扫式高光谱成像仪利用线阵探测器进行成像,这种成像方式具有较高的空间分辨率和光谱分辨率,能够快速获取大面积的高光谱图像数据。本文对推扫式高光谱成像仪原理及优势..
-
摆扫式高光谱成像仪原理是怎么的?有什么优点?
摆扫式高光谱成像仪通过摆镜的摆动来实现对目标区域的扫描成像,可以实现较大范围的扫描,能够覆盖较大的视场角。本文对摆扫式高光谱成像仪原理及优点做了介绍,对摆扫式..
-
高光谱成像仪常见的分光方式有哪些?
高光谱成像仪常见的分光方式有哪些?高光谱成像仪根据分光原理的不同,可以分为棱镜分光原理、光栅分光原理、傅里叶变换分光原理和滤光片分光原理等不同的类型。本文对这..