高光谱成像可改进机器视觉
发布时间:2023-06-08
浏览次数:1085
机器视觉对于许多应用越来越重要,例如对象分类。然而,依赖传统的 RGB 成像有时是不够的——无论算法的复杂程度如何,输入图像都太相似了。
机器视觉对于许多应用越来越重要,例如对象分类。然而,依赖传统的 RGB 成像有时是不够的——无论算法的复杂程度如何,输入图像都太相似了。
高光谱成像为传统图像增加了额外的波长维度,提供了更丰富的数据集。高光谱相机不是在每个像素位置使用红色、绿色和蓝色 (RGB) 值来表示图像,而是在每个点记录完整的光谱以创建 3D 数据集,有时称为高光谱数据立方体。
额外的光谱维度有助于监督学习算法,这些算法可以表征视觉上无法区分的对象——这些能力在多个应用领域都是非常需要的。将高光谱成像与能够检测 1000 nm 以上光的传感器相结合,可以获得更多信息,进一步增强区分不同材料的能力。
农业测量
通过高光谱成像可以深入了解植物和土壤的健康状况。不同的波段或频谱部分对各种输入(水、氮等)敏感,可以在早期阶段识别和纠正氮和水缺乏等问题。
对于农业测量,高光谱相机经常安装在无人飞行器(UAV,即无人驾驶飞机)上,以创建农场的空间和时间地图。机器视觉算法将高光谱数据转换为氮、水和叶绿素水平、作物和杂草密度、产量估计等。该信息与支持GPS 的机器相结合,使农民能够针对特定地点采取行动。
工业检验
在线检查是一种常见的安装方法,其中线扫描高光谱相机记录在传送带上从其下方通过的物品。摄像头速度可调,与产线速度同步,确保100%实时检测覆盖物品。
处理后的数据输出,例如分类结果,可以集成到现有的机器视觉系统中,类似于现有的线扫描技术。具体检测相关应用包括识别异物、分类回收对象、区分岩石类型,甚至根据光学干涉图案确定薄膜厚度。
高光谱成像的工业部署面临的挑战之一是将数据极其丰富的高光谱数据立方体(右上图)转换为有形的见解可能很棘手,需要专业的数据分析/机器学习技能。为了解决这个问题,制造商越来越多地将机器视觉算法纳入他们提供的包中,以便系统输出分类对象的坐标而不是原始的高光谱数据立方体。
消费者应用
或许出乎意料的是,高光谱成像也可用于消费领域,用于分析皮肤健康状况。更具体地说,不同皮肤特征(水、血红蛋白等)的空间分布可以根据它们的特征反射光谱进行映射。因此,该技术可用于皮肤护理诊所甚至化妆品柜台,以更好地了解哪些产品最适合特定客户。最终,高光谱相机可能最终会出现在智能手机中,使定制化妆品和护肤品能够在家中订购。
相关产品
-
凝视式高光谱成像仪原理及优势解析
凝视式高光谱成像仪采用面阵探测器,一次曝光即可获取目标区域的二维图像信息,同时通过光谱分光系统获取不同光谱波段的信息,从而形成高光谱数据立方体。这种成像方式不..
-
推扫式高光谱成像仪有什么优势?
推扫式高光谱成像仪利用线阵探测器进行成像,这种成像方式具有较高的空间分辨率和光谱分辨率,能够快速获取大面积的高光谱图像数据。本文对推扫式高光谱成像仪原理及优势..
-
摆扫式高光谱成像仪原理是怎么的?有什么优点?
摆扫式高光谱成像仪通过摆镜的摆动来实现对目标区域的扫描成像,可以实现较大范围的扫描,能够覆盖较大的视场角。本文对摆扫式高光谱成像仪原理及优点做了介绍,对摆扫式..
-
高光谱成像仪常见的分光方式有哪些?
高光谱成像仪常见的分光方式有哪些?高光谱成像仪根据分光原理的不同,可以分为棱镜分光原理、光栅分光原理、傅里叶变换分光原理和滤光片分光原理等不同的类型。本文对这..