高光谱成像仪采用的分光元件有哪些类型?
发布时间:2024-04-19
浏览次数:543
高光谱成像仪采用的分光元件有哪些类型?高光谱成像仪作为精密的光学仪器,分光元件是其最为核心的部件之一。根据光源分解方式的不同,常见的分光元件有滤光片、棱镜、光栅、迈克尔逊干涉仪及声光可调滤光器等。本文对此作了详细的介绍。
高光谱成像仪采用的分光元件有哪些类型?高光谱成像仪作为精密的光学仪器,分光元件是其最为核心的部件之一。根据光源分解方式的不同,常见的分光元件有滤光片、棱镜、光栅、迈克尔逊干涉仪及声光可调滤光器等。本文对此作了详细的介绍。
滤光片分光:
滤光片是能够过滤掉某些波长光谱的器件。按形成原理来分,滤光片有吸收式、干涉式、反射式以及组合式等。其中干涉式是发展最快、应用最广的滤光片,从紫外到红外整个光谱区都有制造,最窄的光谱宽度已可达0.1 nm左右。常被用于波长需求较少的小型检测仪器的开发。
棱镜分光:
棱镜是利用不同波长的光相对折射率不同的原理来实现分光的,是使用最早的分光器件,但其波长分辨率较低,现代仪器设计已不再使用棱镜作为分光器件。
光栅分光:
光栅是利用光的多缝衍射原理使光发生色散的光学器件。目前常用的光栅为反射式衍射光栅,其具体工作原理是:一束复合光入射狭缝,经准直镜校准为平行光,通过光栅中每个缝的衍射和多缝之间的干涉形成谱线,不同波长的谱线经聚焦镜聚集在出射狭缝形成光谱。光栅的分辨率R=kN,k为常数,N为光栅狭缝数,即单位长度内狭缝数目越多,光谱分辨率越高。现有的光栅其分辨率已可达0.001nm。光栅常被用于测量连续光谱的大型光谱仪,如分光光度计、光谱分析仪等。
迈克尔逊干涉分光:
云顶天宫迈克尔逊干涉仪是傅里叶变换光谱仪的核心部件,其是通过对不同光程两束光的干涉图进行傅里叶变换来形成光谱图的。迈克尔逊干涉仪的优点是波长精度高、分辨率好,可短时间内进行多次扫描。以迈克尔逊干涉仪为核心的光谱仪器的主要优点为光能利用率高、输出能量大,仪器的信噪比和测量灵敏度都较高,因而常被用于对样品中的微量成分进行分析。但是这类仪器最大的缺陷是干涉仪中有移动部件,需要较稳定的工作环境。
声光可调滤光器分光:
声光可调(AOTF)滤光器是利用超声波与特殊晶体的作用而产生分光的光电器件。AOTF的主要优点是波长切换快,重现性好,容易控制。以此为基础的光谱仪具有波长精度高,波长重复误差小,坚固、无移动部件,与计算机接口简便,易受计算机控制等优点。
相关产品
-
凝视式高光谱成像仪原理及优势解析
凝视式高光谱成像仪采用面阵探测器,一次曝光即可获取目标区域的二维图像信息,同时通过光谱分光系统获取不同光谱波段的信息,从而形成高光谱数据立方体。这种成像方式不..
-
推扫式高光谱成像仪有什么优势?
推扫式高光谱成像仪利用线阵探测器进行成像,这种成像方式具有较高的空间分辨率和光谱分辨率,能够快速获取大面积的高光谱图像数据。本文对推扫式高光谱成像仪原理及优势..
-
摆扫式高光谱成像仪原理是怎么的?有什么优点?
摆扫式高光谱成像仪通过摆镜的摆动来实现对目标区域的扫描成像,可以实现较大范围的扫描,能够覆盖较大的视场角。本文对摆扫式高光谱成像仪原理及优点做了介绍,对摆扫式..
-
高光谱成像仪常见的分光方式有哪些?
高光谱成像仪常见的分光方式有哪些?高光谱成像仪根据分光原理的不同,可以分为棱镜分光原理、光栅分光原理、傅里叶变换分光原理和滤光片分光原理等不同的类型。本文对这..